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Large phenotype jumps in biomolecular evolution
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By defining the phenotype of a biopolymer by its active three-dimensional shape, and its genotype by its
primary sequence, we propose a model that predicts and characterizes the statistical distribution of a population
of biopolymers with a specific phenotype that originated from a given genotypic sequence by a single muta-
tional event. Depending on the ratiog0 that characterizes the spread of potential energies of the mutated
population with respect to temperature, three different statistical regimes have been identified. We suggest that
biopolymers found in nature are in a critical regime withg0.1 –6, corresponding to a broad, but not too
broad, phenotypic distribution resembling a truncated Le´vy flight. Thus the biopolymer phenotype can be
considerably modified in just a few mutations. The proposed model is in good agreement with the experimental
distribution of activities determined for a population of single mutants of a group-I ribozyme.
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I. INTRODUCTION

The biological function~or phenotype! of a biopolymer,
such as a ribonucleic acid~RNA! or a protein, is mostly
determined by the three-dimensional structure resulting fr
the folding of linear sequence of nucleotides~RNA! or ami-
noacids ~proteins! that specifies a genotype. Generally,
natural biopolymer sequence~or genotype! codes for a spe-
cific two-dimensional or three-dimensional structure that
fines the biopolymer activity. But one sequence can simu
neously fold in several metastable structures that can lea
different phenotypes. Thus, random mutations of a seque
induce random changes of the metastable structure pop
tions, which generates a random walk of the biopolym
function. Understanding this phenotype random walk is
basic goal for ‘‘quantitative’’ biomolecular evolution.

The statistical properties of RNA secondary structu
considered as a model for genotypes have been investig
in depth in the recent years@1#. The neutral network concep
@2,3#, i.e., the notion of a set of sequences, connec
through point mutations, having roughly the same phe
type, has been shown to apply to RNA secondary structu
Thus, by drifting rapidly along the neutral network of i
phenotype, a sequence may come close to another sequ
with a qualitatively different phenotype, which facilitates th
acquisition of new phenotypes through random evoluti
Moreover, in the close vicinity of any sequence with a giv
structure, there exist sequences with nearly all other poss
structures@4#, as originally proposed in immunology@5#.
Thus, even if the sequence space is much too vast to
explored through random mutations in a reasonable time~an
RNA with 100 bases only has 1060 possible sequences!, the
phenotype space itself may be explored in a few mutati
only, which is what matters biologically. These ideas ha
been brought into operation in a recent experiment@6# show-
ing that a particular RNA sequence, catalyzing a given re
tion, can be transformed into a sequence having a qua
tively different activity, using a small number of mutation
1063-651X/2004/69~3!/031908~7!/$22.50 69 0319
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and without ever going through inactive steps.
This paper investigates the phenotype space exploratio

an elementary level by studying the statistical distribution
a population of biopolymers in a specific three-dimensio
shape, that originated from a given genotypic sequence
single mutational event. It complements studies of the e
lution from one structure to another structure@7#, that con-
sider only the most stable structure for each sequence
neglect the thermodynamical coexistence of different str
tures for the same sequence. It also provides more groun
the recent work that suggests that RNA molecules with no
phenotypes evolved from plastic populations, i.e., popu
tions folding in several structures, of known RNA molecul
@8#. It is experimentally evident, for instance, in Ref.@6#, that
some mutations change the biopolymer chemical activity
a few percent while other mutations change it by orders
magnitude. This is not unexpected since, depending on t
positions in the sequence, some residues have a dram
influence on the 3D conformation while others hardly matt
Thus, the function random walk statistically resembles
Lévy flight @9–11# presenting jumps at very different scale
The respective parts of gradual changes and of sudden ju
in biological evolution is a highly debated issue. While t
gradualist point of view has historically dominated, ev
dences for the presence of jumps have accumulated at
ous hierarchical levels from paleontology@12#, to trophic
systems, chemical reaction networks and neutral netwo
and molecular structure@7#. The jump issue will be treated
here by studying the statistical distribution describing t
phenotype effects of random mutations of a biopolym
genotype.

To address the question of the statistical effects of rand
mutations of functionally active biopolymers, we propose
model inspired from disordered systems physics that n
rally predicts the possibility of broad distributions of activ
ties of randomly mutated biopolymers. With two energy p
rameters describing the polymer energy landscape,
models is shown to exhibit a variety of behaviors and to
©2004 The American Physical Society08-1
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experimental data. Natural biopolymers are in a critical
gime, related to the activity distribution broadness, in wh
a single mutation may have a large, but not too large, eff

II. PHYSICAL MODEL OF SHAPE POPULATION
DISTRIBUTION

The most favorable conformational state of a biopolym
sequence with a given biological activity is generally cons
ered to be the most stable one within the sequence en
landscape. The ruggedness of the energy landscape m
vary depending on the number of other metastable confor
tional states accessible by the sequence. The typical en
spacing between these states can be small enough so
several states of low energy can be thermally populated.
simplicity, we will consider a sequence that is able to fo
into its two lowest energy conformational states, an act
stateA of specific biological function, and an inactive stateI
of unknown function@24,25#, but whose energy is the close
to A’s ~higher or lower! ~see Fig. 1!. The differences betwee
the free energies of the unfolded and folded states forA and
I are denotedDGA andDGI , respectively.

A mutation, i.e., a random change in the biopolymer
quence, modifies the biopolymer energy landscape so
DGA andDGI are transformed into (DGA)M and (DGI)M .
Note that the conformer stateA of the mutant, its three-
dimensional shape, is the same as before whereas the
former stateI does not have to be the same as before. To t
into account the randomness of the mutational process,
mutant free energy differencedGM[(DGI)M2(DGA)M is
taken either with a Gaussian distribution

PG~dGM ![
1

A2pdG0

e2(dGM2dG)2/2dG0
2

~1!

or with a two-sided exponential~Laplace! distribution

Pe~dGM ![
1

2dG0
e2udGM2dGu/dG0, ~2!

FIG. 1. Schematic representations of the molecular energy la
scapes.~a! For the nonmutated molecule.~b! For the mutated mol-
ecule. Only the two lowest energy conformationsA ~active! and I
~inactive! are taken into account. Their 3D conformations are in
cated symbolically. The shaded dots indicate the populationspA

andp I at thermal equilibrium.
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wheredG is the mean ofdGM and wheredG0 characterizes
the width of the distribution. These two energy distributio
are commonly used for disordered systems@13# and enable
us to cover a range of situations from narrow~Gaussian! to
relatively broad~exponential! distributions. Assuming ther-
modynamic rather than kinetic control, the populationspA
and p I512pA of conformersA and I, respectively, are
given by Boltzmann statistics

pA5
1

11e2dGM /RT
, ~3!

whereR is the gas constant andT is the temperature.
From the distributions of free energy differences and E

~3!, one infers the probability distributionsPe or G(pA) of the
population of conformer stateA after a mutation using
Pe or G(pA)5Pe or G(dGM)uddGM /dpAu. For the Gaussian
model, one obtains

PG~pA!5

expF2@ ln pA2 ln~12pA!2ḡ#2

2g0
2 G

A2pg0pA~12pA!
, ~4!

where ḡ[dG/(RT), g0[dG0 /(RT). The ratio g0 of the
scale of energy fluctuations and of the thermal energy
pears frequently in the study of the anomalous kinetics
disordered systems. For the exponential model, one obta

Pe~pA!5
e2ḡ/g0

2g0pA
121/g0~12pA!111/g0

for pA<pm ,

~5a!

Pe~pA!5
e1ḡ/g0

2g0pA
111/g0~12pA!121/g0

for pA>pm ,

~5b!

with the same definitions forḡ and g0, and pm[(1
1e2ḡ)21 ~median population ofA). Note that changingḡ
into 2ḡ is equivalent to performing a symmetry o
Pe or G(pA) by replacingpA by 12pA .

III. TYPES OF DISTRIBUTIONS

To analyze the different types of population distribution
we focus for definiteness on the Gaussian model. A qua
tively similar behavior is obtained for the exponential mod
Figure 2 represents examples ofPG(pA) for the Gaussian
model withḡ521 and variousg0’s. The negative value ofḡ
implies thatA is on average less stable thanI, and hence that
pA is predominantly less than 50%. For smallg0, the distri-
bution PG(pA) is narrow since the widthdG0 of the free
energy distribution is small compared toRTso that there are
only small fluctuations of population around the most pro
able value. When the energy broadnessg0 increases, the
single narrow peak first broadens till, wheng0*1.976 it
splits into two peaks, close, respectively, topA50 and to
pA51. The broad character ofPG(pA) can be intuitively

d-

-

8-2



c

ce

m

t

rd
o

n-

t

re,

n

is

nc-

re

al

ral

in
o-

d

d
al

t

s
on
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understood as a consequence of the nonlinear dependen
pA on dGM . Thus, when the fluctuations ofdGM are larger
thanRT, i.e., wheng0*1, the quasiexponential dependen
of pA on dGM @Eq. ~3!# nonlinearly magnifiesdGM fluctua-
tions to yield a broadpA distribution, even ifdGM fluctua-
tions are relatively small compared to the meandG. A simi-
lar mechanism is at work for tunneling in disordered syste
@14,15#.

A global view of the possible shapes ofPG(pA) is given
in Fig. 3. For any givenḡ, when increasingg0 starting from
0, the single narrow peak ofPG(pA) first broadens then i
splits into two peaks whenḡ5ḡsgn(ḡ)(g0) with

ḡ6~g0![6Fg0Ag0
2221 lnS g02Ag0

222

g01Ag0
222

D G . ~6!

FIG. 2. DistributionsPG(pA) of shape populations of mutate
molecules forḡ521. They are narrow and single peaked for sm
enoughg0 and broad and double peaked for large enoughg0. The
transition from one to two peaks occurs atg0.1.976 in agreemen
with Eq. ~6!. Inset: logarithmic plot ofPG(pA) for g053 showing
the broad character of the smallpA peak.

FIG. 3. Possible shapes ofPG(pA). The shaded area indicate
the two-peaks region. The dashed line gives the transition from
to two peaks@cf. Eq. ~6!#. Insets show examples ofPG(pA) corre-
sponding to theg0 and ḡ indicated by the black dots (PG’s not to
scale!. The black square corresponds to the fit of Fig. 4 data.
03190
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@This expression results from a lengthy but straightforwa
study of PG(pA).# When g0 increases further, these tw
peaks get closer topA50 and topA51 while acquiring
significant tails~see Sec. VII!. For any giveng0, increasing
ḡ roughly amounts to moving the populationspA towards
larger values as expected since largerḡ’s correspond to
stabler statesA. However, distinct behaviors arise depe
ding on g0. If g0,A2, whatever the value ofḡ, the dis-
tribution PG(pA) is always sufficiently narrow to presen
a single peak. If g0.A2, the distribution PG(pA) is
sufficiently broad to have two peaks when, furthermo
the distribution is not too asymmetric, which occurs forḡ

P@ ḡ2(g0),ḡ1(g0)#. In short, depending onḡ5dḠ/RT,
which characterizes mainly the peak~s! position, and ong0
5G0 /RT, which characterizes mainly the distributio
broadness, the distributionsPG(pA) are either unimodal or
bimodal, either broad or narrow. This variety of behaviors
reminiscent of beta distributions.

IV. FROM SHAPE POPULATIONS TO CATALYTIC
ACTIVITIES

Up to now, we have discussed the distributionP(pA) of
the population of a shapeA that is functionally active. How-
ever, as far as it concerns biopolymers with enzymatic fu
tions, what is usually measured is a chemical activitya,
i.e., the product of a reaction ratek for the conformer A by
the populationpA of this conformer. The reaction rates a
given by the Arrhenius lawk5k0e2Ea /RT wherek0 is a con-
stant andEa is the activation energy. Thus, the chemic
activity writes, using Eq.~3!:

a5k0e2Ea /RT
1

11e2dGM /RT
. ~7!

Random mutations may induce random modifications ofEa ,
dGM , or both. Fluctuations ofdGM have been treated
above. One can introduce fluctuations ofEa in the same way.
We do not do it here in detail but present only the gene
trends.

The effects of adding an activation energy distribution
addition to the free energy difference distribution are tw
fold. For small activities, the distributionP(a) of chemical
activities is similar to the smallP(pA) peak at smallpA .
Indeed, the reaction ratek depends exponentially onEa , just
as the populationpA depends exponentially ondGM when
pA!1. Moreover, the product of two broadly distribute
random variables is also broadly distributed@26# with a
shape similar to the one ofP(pA). For large activities, on
the other hand,pA and k behave differently becausepA is
bounded by 1 whilek is unbounded. Thus, if thek distribu-
tion is broad enough, the distribution ofa at largea may
exhibit a broadened structure compared to thepA.1 peak of
P(pA).

In summary, the distribution of chemical activitiesP(a)
is similar to the distribution of shape populationsP(pA)
when P(pA) presents a largepA.0 peak ~conditions for
this to occur are explicited in Sec. VI!. Thus, by observing
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the shape of thea.0 peak in the activity distributionP(a),
one does not easily distinguish between activation ene
dispersion, which affectsk, and free energy difference dis
persion, which affectspA . On the other hand, at largea,
P(a) is differently influenced by activation energy dispe
sion and by free energy difference dispersion. The availa
experimental data~see Sec. V! enables us to precisely ana
lyze P(a) at small activities but not at large activities. Thu
for practical purposes, it is not meaningful in this paper
consider a distribution of activation energies on top of a d
tribution of free energy differences. In the sequel, we w
thus do as if only the distribution of free energies was
volved, stressing that similar effects can be obtained from
distribution of activation energies.

V. ANALYSIS OF EXPERIMENTAL DATA

Comparison of the theoretical distributions of Eqs.~5! and
~4! with experimental data enables us to test the relevanc
the proposed model. We have analyzed the measuremen
the catalytic activities of a set of 157 mutants derived from
self-splicing group I ribozyme, a catalytic RNA molecu
@16# ~out of the 345 mutants generated in Ref.@16#, we only
considered the 157 ones with single point mutations!. The
original ‘‘wild-type’’ molecule is formed of a conserved cata
lytic core that catalyzes the cleavage of another part of
molecule considered as the substrate. The set of mutan
derived from the original ribozyme by systematically pe
forming all single point mutations of the catalytic cor
i.e., of the part of the molecule that most influences the c
lytic activity. Nucleotides out of the core which, in genera
influence the catalytic activity less, are left unmutated. Th
in our framework, this set of mutants can be seen as bia
towards deleterious mutations. Indeed, mutations of the q
sioptimized core are likely to lead to much less active m
tants, while mutations of remote parts are likely to leave
activity essentially unchanged. If all parts of the molecu
had been mutated, more neutral or quasineutral mutat
would have been obtained. Another point of view, which
adopt here is to consider the catalytic core as a molecul
itself, on which all possible single point mutations have be
performed.

The 157 measured activities are used to calculate a p
lation distribution with inhomogenous binning~cf. broad dis-
tribution!. Two bins required special treatment: the small
bin, centered in 0.5%, contains 40 mutants with nonmea
ably small activities~,1% of the original activity!; the larg-
est bin, centered in 95%, contains the six mutants with
tivities larger than 90% of the original ‘‘wild’’ RNA activity
~the largest measured mutant activity is 140%!. These two
points, whose abscissae are arbitrary within an interval,
not essential for the obtained results. At last, as very
mutants have activities larger than the wild-type ribozym
the proportionality constant between activity and populat
is set by matching a populationpA51 to the activity of the
wild-type ribozyme.

The obtained distribution~see Fig. 4! has a large peak in
pA.0, indicating that most mutations are deleterious, wit
long tail at larger activities and a possible smaller peak
03190
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pA.1. This nontrivial shape is well fitted by the Gaussi
model of Eq.~4! with ḡ523.6 andg052.9 ~the uncertainty
on these parameters is about 50%, see dashed lines in Fi!.
One infersdG.22.1 kcal/mol anddG0.1.7 kcal/mol (T
5300 K). The order of magnitude of these values is co
patible with thermodynamic measurements performed
similar systems@17–20#. This confirms the plausibility of the
proposed approach. The inset of Fig. 4 shows the popula
distribution in theexponentialmodel with ḡ and g0 values
taken from theGaussianfit. The agreement with the exper
mental data is also quite good. Thus, the proposed appro
soundly does not strongly depend on the yet unknown sh
details of the energy distribution. Finally, one can estim
the broad character of the activity distribution from the s
tistical analysis of the experimental data. Indeed, accord
e.g., to the Gaussian model fit, the typical, most proba
population pA is found to be.631026 while the mean
population is.0.15. Thus, the activity distribution span
more than four orders of magnitude.

VI. COARSE GRAINING DESCRIPTION:
ALL OR NONE FEATURES

The variation of activity of a biopolymer upon mutation
often described as an ‘‘all or none’’ process: mutations
considered either as neutral~the mutant retains fully its ac
tivity and pA.100%) or as lethal~the mutant loses com
pletely its activity andpA.0%). Satisfactorily, a coarse
graining description of the proposed statistical models exh
its such all or none regimes for appropriate (ḡ,g0) values, as
well as other regimes.

To obtain a quantitative coarse graining description,
define the mutants with ‘‘no’’ activity as those with popula
tion that has less than 12%@.pA(dGM522RT)# in the A
shape. Their weight is

FIG. 4. Analysis of an experimental distribution of activitie
Experimental data are derived from Ref.@16#. Error bars give the
one standard deviation statistical uncertainty. The solid line is a
parameter fit (ḡ,g0) to the model of Gaussian energy distributio
The dashed lines correspond to the sameg0 and modifiedḡ’s,
which enables us to estimate the uncertainty onḡ. Inset: compari-
son of the data to the model of exponential energy distributiong0

and ḡ are not fitted again but taken from the Gaussian model fi!.
8-4
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w05E
0

12%

Pe or G~pA!dpA5E
2`

22RT

Pe or G~dG!ddG.

~8!

Similarly, the mutants with ‘‘full,’’ respectively, ‘‘inter-
mediate,’’ activity are defined as those withpA>88%,
respectively 12%<pA<88%, and their weight is
w1005*2RT

` Pe or G(dG)ddG, respectively, wi

5*22RT
12RTPe or G(dG)ddG. Taking for definiteness the Gaus

ian model leads to

w05FS 2
2

g0
2

ḡ

g0
D , ~9!

whereF(u)5*2`
u e2t2/2dt/A2p is the distribution function

of the normal distribution. Similarly, one haswi5F@(2
2ḡ)/g0#2F@2(21ḡ)/g0# and w100512F@(22ḡ)/g0#.
Approximate expressions for F(u) @F(u)
.2e2u2/2/(A2pu) for u!21, F(u).1/21u/A2p for
uuu!1 andF(u).12e2u2/2/(A2pu) for u@1] give the re-
gimes in which each weightw is negligible (w!1), domi-
nant (12w!1), or in between. For instance,w0 is negli-
gible for ḡ.g022, dominant for ḡ,2g022, and
intermediate for2g022,ḡ,g022. These inequalities in
dicate the transition from one regime to another. To
strictly in one regime typically requires thatḡ/g0 is larger or
greater than 1 from the corresponding criterion, e.g.,w0 is
strictly negligible whenḡ/g0.11(g022)/g0. The transi-
tions from one regime to another one are in general ex
nentially fast~solid lines in Fig. 5!. However, in the region
(g0.2, uḡu,g022), the transitions from one regime to a
other one are smooth~dashed lines in Fig. 5! since, in this
region, the weights vary slowly, e.g.,wi.4/(g0A2p).

The resulting coarse graining classification ofPG(pA) is
represented in Fig. 5. The ‘‘all or none’’ behavior, denot
‘‘0 & 100,’’ appears in the regiong0*6/Ap/2 and uḡu
&Ap/2g026 as the result of a large dispersion of ener

FIG. 5. Coarse graining features of the population distribut
PG(pA) in the Gaussian model. In each region, the populat
ranges dominating the distribution have been indicated~0 for pA

<12%, i for 12%<pA<88%, and 100 forpA>88%).
03190
e

o-

differences associated to a moderate average energy d
ence. We note that all possible types of distributions are
tually present in this model: probabilities concentrated
small, intermediate or large values~0, i, or 100!; probabilities
spread over both small and intermediate~0 & i ), both small
and large~0 & 100, all or none! or both intermediate and
large (i & 100! values; probabilities spread over small, i
termediate and large values at the same time~0 & i & 100!.
The coarse graining classification of Fig. 5 complements
number of peaks classification of Fig. 3 without overlappi
it. Indeed, there exist parametersg0 and ḡ for which,
e.g., two peaks coexist but one of these peaks has a n
gible weight. Thus the presence of a peak is not autom
cally associated to a large weight in the region of this pe

VII. ZOOMING IN THE pA¶0 PEAK: LONG TAILS

To go beyond the coarse graining description, we zoom
the pA.0 peak. As shown in the inset of Fig. 2, the sm
activities, labeled as ‘‘no activity’’ in a coarse graining d
scription, actually consist of nonzero activities with valu
scanning several orders of magnitude. This can be analy
quantitatively, e.g., in the Gaussian model. ForpA.0, the
activity distribution given by Eq.~4! is quasi-lognormal:

PG~pA!.
1

A2pg0pA

expF2~ ln pA2ḡ!2

2g0
2 G . ~10!

Thus,PG(pA) has as a power-law-like behavior@15,21#

PG~pA!.
1

A2pg0pA

for eg2̄A2g0&pA&eḡ1A2g0,

~11!

in the vicinity of the lognormal medianeḡ. This corresponds
to an extremely long tailed distribution, since 1/pA is not
even normalizable. It presents the peculiarity that, fora and
a11 belonging to@ ḡ2A2g0 ,ḡ1A2g0#, the probability to
obtain a populationpA of a given order of magnitudea, i.e.,
pAP@ea,ea11#, does not depend on the considered orde
of magnitudea, since

E
ea

ea11

PG~pA!dpA.const. ~12!

Thus, if a living organism has to adapt the chemical activ
of one of its biopolymer constituents, it can explore seve
order of magnitude of activity by only few mutations withi
the biopolymer. The activity changes mimic a Le´vy flight
@22# as revealed, e.g., by the experimental data in Ref.@6#.
The large activity changes will raise self-averaging issu
@15# that will add up to those generated by correlations alo
evolutionary paths@23#.

Three broadness regimes corresponding to three ev
tionary regimes can be distinguished. Ifg0 is very large, the
mutant activities span a very large range. This regime mi
be globally lethal because, in most cases, the mutant act
will be either too low or too large to be biologically usefu

n
n
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However, under conditions of intense stress, the large v
ability might allow the system to evolve radically. Withg0
510, for instance, the activity range covers typically 12
ders of magnitude from 1026eḡ to 106eḡ @see Eq.~11!#. If g0
is moderately large, the mutant activities span just a f
orders of magnitude. This regime is broad enough to per
significant changes, but not too broad to avoid producing
many lethal changes. Withg053, for instance, the activity
range covers typically 3–4 orders of magnitude fro
1021.8eḡ to 101.8eḡ. If g0 is small, the lognormal distribution
peak can be approximated by a Gaussian@15#

PG~pA!.
1

A2pg0eḡ
expF2~pA2eḡ!2

2~g0eḡ!2 G . ~13!

The distribution is now narrow and the ranges of values
typically @eḡ(122g0),eḡ(112g0)#. This type of distribu-
tion is not adapted for producing large changes, but rathe
performing fine tuning optimization. Withg050.1, for in-
stance, the activity range covers only620% aroundeḡ.

We remark that the group-I ribozyme which we have a
lyzed corresponds tog0.2.9, right in the critical regime of
moderately largeg0. One can guess from experimental stu
ies of other biopolymers or from chemical consideratio
that most biopolymers will fall in this range sincedG0 is
typically on the order of a few kilocalories whileRT is
.0.6 kcal. ~Note thatdG0 corresponds to the free energ
change between the biopolymer native 3D state and an
folded state, in which the biopolymer has lost its thre
dimensional shape but not its full secondary structure.! It
would be interesting to perform further statistical data ana
sis to see how, e.g., the available protein mutagenesis stu
fit with our present model.

The energy statistics associated mutations is likely to
determined at gross scale by the basic biophysics of the m
ecules involved. This fixes a range fordG0. It is nonetheless
plausible and suggested by our discussion that there i
evolutionary preferred type of activity distribution, an
hence of sequences, that may imply a fine tuning ofg0
5dG0 /RT within the constraints ondG0 coming from bio-
physics~see Fig. 6! so that each mutation typically generat
a significant, but not systematically lethal, activity change
one considers that the activity changes must cover betw
say, one and seven orders of magnitude, then the alloweg0
range is 1–6@see Eq.~11!#.

To answer the question whether the energy statistic
solely dictated by molecular biophysics or whether it is a
influenced by evolutionary requirements, one may comp
the energy statistics of molecules from different thermal
vironments. The conservation of thedG0 range across psy
chrophilic and thermophilic molecules would stress t
domination of biophysics factors. Note that our model wou
then imply different stochastic evolutionary dynamic
through the width of the activity distribution, for psychro
philic and thermophilic environments. Conversely, the co
servation ofg0 would reveal the importance of evolutiona
requirements.
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VIII. CONCLUSIONS

In this paper, we have presented a model for the distri
tion of biopolymer activities resulting from mutations of
given sequence. The model is characterized by the stati
of the energy differences between active conformations
inactive conformations. A similar model would be obtain
by considering the statistics of activation energies. T
model fits the measured activity distribution of a ribozym
with energy parameters in the physically appropriate ran
It is also able to reproduce commonly observed behav
such as all or none.

Importantly, the peak of small activities exhibits three d
tinct types depending on the broadness of the distribution
energy differences. Real biopolymers are in a critical regi
allowing the exploration of different ranges of activities in
few mutations without being too often lethal. This critic
regime seems the most favorable evolutionary regime
could be the statistical engine allowing molecular evolutio
Thus the present work supports the idea that, for evolution
take place, the temperature and the physicochemistry dic
ing the free energy scales of biopolymers must obey a cer
ratio. At last, it suggests that, by looking at small variatio
of this ratio, one might be able to classify biopolymers. O
expects, for instance, that biopolymer sequences that
locked in a shape with a specific function, will have smal
g0 than rapidly evolving biopolymers sequences that co
acquire new functions by undergoing major structu
changes. Thus, at the origin of life or during rapidly evolvin
punctuations, biopolymers with largerg0 than those charac
terizing highly optimized, modern RNA and protein mo
ecules, could have contributed to the emergence of no
phenotypes, leading thus to an increase of complexity.

FIG. 6. Free energy dispersiondG0 as a function ofg0 for
different temperaturesT. The upper and lower temperature limi
for life are, respectively,.121 °C ~394 K! and.220 °C ~253 K!.
Depending on whether the energy statistics is determined by
biophysics or by evolutionary requirements, the range of eitherdG0

or of g0 is fixed ~see, for example, the dashed lines!. Evolutionary
requirements suggest 1&g0&6.
8-6



ro

of

en

o,

te

A.
J.W.

ct.

ic

ys.

u.

en-

t

LARGE PHENOTYPE JUMPS IN BIOMOLECULAR EVOLUTION PHYSICAL REVIEW E69, 031908 ~2004!
@1# W. Fontana, BioEssays24, 1164~2002!.
@2# M. Kimura, Nature~London! 217, 624 ~1968!.
@3# M. Kimura, The Neutral Theory of Molecular Evolution~Cam-

bridge University Press, Cambridge, 1993!.
@4# P. Schuster, W. Fontana, P.F. Stadler, and I.L. Hofacker, P

R. Soc. London, Ser. B255, 279 ~1994!.
@5# A.S. Perelson and G.F. Oster, J. Theor. Biol.81, 645 ~1979!.
@6# E.A. Schultes and D.P. Bartel, Science289, 448 ~2000!.
@7# W. Fontana and P. Schuster, Science280, 1451~1998!.
@8# L.W. Ancel and W. Fontana, J. Exp. Zool.288, 242 ~2000!.
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