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Large phenotype jumps in biomolecular evolution
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By defining the phenotype of a biopolymer by its active three-dimensional shape, and its genotype by its
primary sequence, we propose a model that predicts and characterizes the statistical distribution of a population
of biopolymers with a specific phenotype that originated from a given genotypic sequence by a single muta-
tional event. Depending on the ratg, that characterizes the spread of potential energies of the mutated
population with respect to temperature, three different statistical regimes have been identified. We suggest that
biopolymers found in nature are in a critical regime wih=1—-6, corresponding to a broad, but not too
broad, phenotypic distribution resembling a truncatéayl@light. Thus the biopolymer phenotype can be
considerably modified in just a few mutations. The proposed model is in good agreement with the experimental
distribution of activities determined for a population of single mutants of a group-I ribozyme.
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I. INTRODUCTION and without ever going through inactive steps.
This paper investigates the phenotype space exploration at

The biological function(or phenotypg of a biopolymer, an elementary level by studying the statistical distribution of
such as a ribonucleic acitRNA) or a protein, is mostly a population of biopolymers in a specific three-dimensional
determined by the three-dimensional structure resulting fronshape, that originated from a given genotypic sequence by a
the folding of linear sequence of nucleotid€NA) or ami-  single mutational event. It complements studies of the evo-
noacids (proteing that specifies a genotype. Generally, alution from one structure to another struct|i, that con-
natural biopolymer sequender genotypég codes for a spe- sider only the most stable structure for each sequence and
cific two-dimensional or three-dimensional structure that deneglect the thermodynamical coexistence of different struc-
fines the biopolymer activity. But one sequence can simultatures for the same sequence. It also provides more grounds to
neously fold in several metastable structures that can lead the recent work that suggests that RNA molecules with novel
different phenotypes. Thus, random mutations of a sequenggnenotypes evolved from plastic populations, i.e., popula-
induce random changes of the metastable structure populéiens folding in several structures, of known RNA molecules
tions, which generates a random walk of the biopolymef8]. It is experimentally evident, for instance, in Rg8), that
function. Understanding this phenotype random walk is asome mutations change the biopolymer chemical activity by
basic goal for “quantitative” biomolecular evolution. a few percent while other mutations change it by orders of

The statistical properties of RNA secondary structuresnagnitude. This is not unexpected since, depending on their
considered as a model for genotypes have been investigat@dsitions in the sequence, some residues have a dramatic
in depth in the recent yeaf$]. The neutral network concept influence on the 3D conformation while others hardly matter.
[2,3], i.e., the notion of a set of sequences, connectedhus, the function random walk statistically resembles a
through point mutations, having roughly the same phenoteévy flight [9—11] presenting jumps at very different scales.
type, has been shown to apply to RNA secondary structureI.he respective parts of gradual changes and of sudden jumps
Thus, by drifting rapidly along the neutral network of its in biological evolution is a highly debated issue. While the
phenotype, a sequence may come close to another sequengradualist point of view has historically dominated, evi-
with a qualitatively different phenotype, which facilitates the dences for the presence of jumps have accumulated at vari-
acquisition of new phenotypes through random evolutionous hierarchical levels from paleontolog$2], to trophic
Moreover, in the close vicinity of any sequence with a givensystems, chemical reaction networks and neutral networks,
structure, there exist sequences with nearly all other possiblend molecular structurg?]. The jump issue will be treated
structures[4], as originally proposed in immunologhf]. here by studying the statistical distribution describing the
Thus, even if the sequence space is much too vast to hghenotype effects of random mutations of a biopolymer
explored through random mutations in a reasonable tame genotype.
RNA with 100 bases only has 9Opossible sequenceghe To address the question of the statistical effects of random
phenotype space itself may be explored in a few mutationsnutations of functionally active biopolymers, we propose a
only, which is what matters biologically. These ideas havemodel inspired from disordered systems physics that natu-
been brought into operation in a recent experiniéihshow-  rally predicts the possibility of broad distributions of activi-
ing that a particular RNA sequence, catalyzing a given reacties of randomly mutated biopolymers. With two energy pa-
tion, can be transformed into a sequence having a qualitaameters describing the polymer energy landscape, this
tively different activity, using a small number of mutations models is shown to exhibit a variety of behaviors and to fit
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(a) mutation (b) where §G is the mean 0BGy, and wheresG, characterizes
the width of the distribution. These two energy distributions
are commonly used for disordered systdrm3] and enable
us to cover a range of situations from narré@aussianto
relatively broad(exponentigl distributions. Assuming ther-
modynamic rather than kinetic control, the populatians
and m=1—m, of conformersA and |, respectively, are
given by Boltzmann statistics

1
1+e %um/RT’

()

TA—

A 1
_ _ whereR is the gas constant andis the temperature.
FIG. 1. Schematic representations of the molecular energy land- From the distributions of free energy differences and Eq.
scapes(a) For the nonmutated moleculéh) For the mutated mol- (3), one infers the probability distributior, () of the
ecule. Only the two lowest energy conformatiohgactive and | ’ . or GA ©/ A .
population of conformer staté after a mutation using

(inactive are taken into account. Their 3D conformations are indi- B .
cated symbolically. The shaded dots indicate the populatiens e or6(7a)=Pe or6(9G)|dSGy /d,|. For the Gaussian
model, one obtains

and m; at thermal equilibrium.

2
experimental data. Natural biopolymers are in a critical re- ex —[Inma—In(1—m)—g]
gime, related to the activity distribution broadness, in which 293
a single mutation may have a large, but not too large, effect. Po(ma)= rgema(l ) @
TYoTAl L™ T
Il. PHYSICAL MODEL OF SHAPE POPULATION = sSCc. — ;
where g=6G/(RT), go=686G,/(RT). The ratiog, of the
DISTRIBUTION I (RD, 9o=0Go/(RT) Jo

scale of energy fluctuations and of the thermal energy ap-

The most favorable conformational state of a biopolymeP€ars frequently in the study of the anomalous kinetics of
sequence with a given biological activity is generally consig-disordered systems. For the exponential model, one obtains

ered to be the most stable one within the sequence energy

landscape. The ruggedness of the energy landscape might P (mx)= e 9o for ma<ar

vary depending on the number of other metastable conforma- ~ ¢ "4 zgowlfl’%(l_ )L o AT Tm
tional states accessible by the sequence. The typical energy A (58
spacing between these states can be small enough so that

several states of low energy can be thermally populated. For et 99

simplicity, we will consider a sequence that is able to fold P (7,)= T —— for ma=mp,,
into its two lowest energy conformational states, an active 2907, 9(1— )t M0

stateA of specific biological function, and an inactive state (5b)

of unknown functior{ 24,25, but whose energy is the closest o _

to A’s (higher or lowey (see Fig. 1 The differences between W'th__trlel same definitions forg and go, and m,=(1

the free energies of the unfolded and folded statessfand €~ %)~ (median population of). Note that changing

| are denoted\G, andAG, , respectively. into —g is equwal_ent to performing a symmetry on
A mutation, i.e., a random change in the biopolymer sePeorc(7a) by replacingm, by 1—m,.

guence, modifies the biopolymer energy landscape so that

AG, andAG; are transformed intoXGa)y and AG))y - Ill. TYPES OF DISTRIBUTIONS

Note that the conformer statd of the mutant, its three-

dimensional shape, is the same as before whereas the con

former statd does not have to be the same as before. To tak

into account the randomness of the mutational process, t

mutant free energy differencéGy=(AG,)y—(AGA)y is

taken either with a Gaussian distribution

_To analyze the different types of population distributions,
e focus for definiteness on the Gaussian model. A qualita-
vely similar behavior is obtained for the exponential model.
igure 2 represents examples BE(m,) for the Gaussian
model withg= — 1 and variougy's. The negative value @
implies thatA is on average less stable thiarand hence that
p IS predominantly less than 50%. For sm@gjl the distri-

Ps(8Gy)= ;e*(ﬁGM*ﬁ)zlzf?Gg ) bution Pg(74) is narrow since the widtidG, of the free
\/Z(SGO energy distribution is small compared RY so that there are
] ] ) o only small fluctuations of population around the most prob-
or with a two-sided exponentidlLaplace distribution able value. When the energy broadnegsincreases, the
single narrow peak first broadens till, whep=1.976 it
P.(8G,,)= e~ 9Gm—3G/5Gy 2) splits into two peaks, close, respectively, 4g=0 and to
256G, ma=1. The broad character d?g(m,) can be intuitively
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FIG. 2. DistributionsPg(m,) of shape populations of mutated
molecules foig=—1. They are narrow and single peaked for small
enoughg, and broad and double peaked for large enogghThe
transition from one to two peaks occursggt=1.976 in agreement
with Eq. (6). Inset: logarithmic plot oPg(7,) for go=3 showing
the broad character of the smat), peak.
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[This expression results from a lengthy but straightforward
study of Pg(ma).] When gq increases further, these two
peaks get closer tarp,=0 and tow,=1 while acquiring
significant tails(see Sec. VI For any givengg, increasing

g roughly amounts to moving the populatioms, towards
larger values as expected since larges correspond to
stabler statesA. However, distinct behaviors arise depen-
ding ongo. If go<\2, whatever the value of, the dis-
tribution Pg(m,) is always sufficiently narrow to present
a single peak. Ifgy>+2, the distribution Pg(7,) is
sufficiently broad to have two peaks when, furthermore,
the distribution is not too asymmetric, which occurs tpr

€[9-(90),9:(gg)]. In short, depending org=6G/RT,
which characterizes mainly the péakposition, and orgg
=Go/RT, which characterizes mainly the distribution
broadness, the distributior®g(,) are either unimodal or
bimodal, either broad or narrow. This variety of behaviors is
reminiscent of beta distributions.

IV. FROM SHAPE POPULATIONS TO CATALYTIC
ACTIVITIES

understood as a consequence of the nonlinear dependence ofUp to now, we have discussed the distribut®(mr,) of

p 0N 8Gy, . Thus, when the fluctuations @Gy, are larger
thanRT, i.e., whengy=1, the quasiexponential dependence
of w5 on Gy [Eq. (3)] nonlinearly magnifieG,, fluctua-
tions to yield a broadr, distribution, even if6Gy, fluctua-
tions are relatively small compared to the me¥h. A simi-

the population of a shap&that is functionally active. How-
ever, as far as it concerns biopolymers with enzymatic func-
tions, what is usually measured is a chemical actiaty
i.e., the product of a reaction rakefor the conformer A by
the populationsr, of this conformer. The reaction rates are

lar mechanism is at work for tunneling in disordered systemgjiven by the Arrhenius law=kyeFa’/RT wherek, is a con-

[14,15.

A global view of the possible shapes BE(,) is given
in Fig. 3. For any givery, when increasing, starting from
0, the single narrow peak d?g(7,) first broadens then it
splits into two peaks wheg=gsgng (9o) With

_ o~ VI5—2
0-(g0)==|goVgi—2+In| ———=—]|.  (§)
° o+ Vg5~ 2
LA O B B I B
4= ]pea.ks—>1
Sk
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20w 1 peak region
_2__ narrow  broad
- e
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Coovov v vy 00 0 1y
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FIG. 3. Possible shapes &(m,). The shaded area indicates
the two-peaks region. The dashed line gives the transition from on
to two peakdcf. Eq. (6)]. Insets show examples &f;(7,) corre-
sponding to they, andg indicated by the black dotsP’s not to
scalg. The black square corresponds to the fit of Fig. 4 data.

stant andE, is the activation energy. Thus, the chemical
activity writes, using Eq(3):

Eo/RT 1

a=koe = —sGwRT

@)

Random mutations may induce random modificationg of
6Gy,, or both. Fluctuations oféG,, have been treated
above. One can introduce fluctuationdgfin the same way.
We do not do it here in detail but present only the general
trends.

The effects of adding an activation energy distribution in
addition to the free energy difference distribution are two-
fold. For small activities, the distributioR(a) of chemical
activities is similar to the smalP(,) peak at smalkr,.
Indeed, the reaction ratedepends exponentially dg,, just
as the populationr, depends exponentially 08G,, when
mao<1. Moreover, the product of two broadly distributed
random variables is also broadly distributg26] with a
shape similar to the one d#(7,). For large activities, on
the other handsr, and k behave differently because, is
bounded by 1 whil& is unbounded. Thus, if thie distribu-
tion is broad enough, the distribution afat largea may
exhibit a broadened structure compared to#he=1 peak of
P(ma).

e In summary, the distribution of chemical activiti®{a)
is similar to the distribution of shape populatioR,)
when P(7r,) presents a larger,=0 peak(conditions for
this to occur are explicited in Sec. MIThus, by observing
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the shape of tha=0 peak in the activity distributioR(a),

one does not easily distinguish between activation energ) ]

dispersion, which affectk, and free energy difference dis- 10 exper. data 10 exponential E -
persion, which affectsr,. On the other hand, at large 3 & model with: 3
P(a) is differently influenced by activation energy disper- - < / gj%g? .
sion and by free energy difference dispersion. The available~ | . o .
experimental datéasee Sec. Y enables us to precisely ana- |—g< g/L.5 _
lyze P(a) at small activities but not at large activities. Thus, &, . .

’
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for practical purposes, it is not meaningful in this paper to
consider a distribution of activation energies on top of a dis-

LI IIIIIII
’

. \\
Gaussian “*\i

tribution of free energy differences. In the sequel, we will 1_%‘0:‘1%%% ~~~~~~~~~ i
thus do as if only the distribution of free energies was in- E g,=291 ST E
volved, stressing that similar effects can be obtained from & E f’XlI'S L 'I""I“‘I\;
distribution of activation energies. 0 0.2 04 0.6 0.8 1
T
A

V. ANALYSIS OF EXPERIMENTAL DATA FIG. 4. Analysis of an experimental distribution of activities.

Comparison of the theoretical distributions of E¢®.and Experimental data are derived from REE6]. Error bars give the

(4) with experimental data enables us to test the relevance Qne standard deviation statistical uncertainty. The solid line is a two
rameter fit @, to the model of Gaussian energy distribution.

the proposfed mloFigI. We have analyzed the mea'surements%e dashed gwge(g correspond to the saggeand ngc))/difiedﬁs
the catalytic activities of a set of 157 mutants derived from a . agaear ) "
self-splicin rounp | ribozvme. a catalvtic RNA molecule which enables us to estimate the uncertaintygorinset: compari-
16 (p ¢ fgthg 34p5 ¢ ty ’ t dy a6 | son of the data to the model of exponential energy distributign (
[16] out ot the mutants generated in Réf], we only andg are not fitted again but taken from the Gaussian modgel fit
considered the 157 ones with single point mutatio$he

original “wild-type” molecule is formed of a conserved cata- 7,~=1. This nontrivial shape is well fitted by the Gaussian
lytic core that catalyzes the cleavage of another part of thenodel of Eq.(4) with g= — 3.6 andg,=2.9 (the uncertainty
molecule considered as the substrate. The set of mutants d% these parameters is about 50%, see dashed lines in)Fig. 4
derived from the original ribozyme by systematically per- gne inferssG= — 2.1 kcal/mol andéG,=1.7 kcal/mol (T
forming all single point mutations of the catalytic core, —3qqg K). The order of magnitude of these values is com-
i.e., of the part of the molecule that most influences the Catapatible with thermodynamic measurements performed on
lytic activity. Nucleotides out of the core which, in general, gimilar system$17—20. This confirms the plausibility of the
influence the catalytic activity less, are left unmutated. Thusproposed approach. The inset of Fig. 4 shows the population
in our framework, this set of mutants can be seen as biasglsyipution in theexponentialmodel withg and g, values
towards deleterious mutations. Indeed, mutations of the quazken from theGaussianfit. The agreement with the experi-
sioptimized core are likely to lead to much less active MU~y antal data is also quite good. Thus, the proposed approach
tants, while mutations of remote parts are likely to leave th‘“soundly does not strongly depend on the yet unknown shape
activity essentially unchanged. If all parts of the moleculeyetails of the energy distribution. Finally, one can estimate
had been mutated, more neutral or quasineutral mutationge proad character of the activity distribution from the sta-

would have been obtained. Another point of view, which Weyisical analysis of the experimental data. Indeed, according,
adopt here is to consider the catalytic core as a molecule ig 4 o the Gaussian model fit, the typical, most probable,
itself, on which all possible single point mutations have beerbopulation 7, is found to be=6x10"° while the mean

performed. . population is=0.15. Thus, the activity distribution spans
The 157 measured activities are used to calculate a popyrore than four orders of magnitude.

lation distribution with inhomogenous binnirigf. broad dis-

trjbution). Two_ bins required _special treatmen';: the smallest VI. COARSE GRAINING DESCRIPTION:

bin, centered in Q.S%, contains 4Q mutants W|th nonmeasur- ALL OR NONE FEATURES

ably small activitieg <1% of the original activity; the larg-

est bin, centered in 95%, contains the six mutants with ac- The variation of activity of a biopolymer upon mutation is

tivities larger than 90% of the original “wild” RNA activity often described as an “all or none” process: mutations are

(the largest measured mutant activity is 140%hese two considered either as neutri@ghe mutant retains fully its ac-

points, whose abscissae are arbitrary within an interval, argévity and w,=100%) or as lethalthe mutant loses com-

not essential for the obtained results. At last, as very fewletely its activity andm,=0%). Satisfactorily, a coarse

mutants have activities larger than the wild-type ribozyme graining description of the proposed statistical models exhib-

the proportionality constant between activity and populatiorits such all or none regimes for appropriatgd,) values, as

is set by matching a populatiom,=1 to the activity of the well as other regimes.

wild-type ribozyme. To obtain a quantitative coarse graining description, we
The obtained distributiofisee Fig. 4 has a large peak in define the mutants with “no” activity as those with popula-

7a=0, indicating that most mutations are deleterious, with aion that has less than 1206 7A(5Gy, = —2RT)] in the A

long tail at larger activities and a possible smaller peak irshape. Their weight is
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TTTT differences associated to a moderate average energy differ-
ence. We note that all possible types of distributions are ac-
tually present in this model: probabilities concentrated at
small, intermediate or large valué i, or 100; probabilities
spread over both small and intermedié@e& i), both small

and large(0 & 100, all or nong or both intermediate and
large ( & 100) values; probabilities spread over small, in-
termediate and large values at the same tith& i & 100).

The coarse graining classification of Fig. 5 complements the
number of peaks classification of Fig. 3 without overlapping
it. Indeed, there exist parametegy, and g for which,

e.g., two peaks coexist but one of these peaks has a negli-
gible weight. Thus the presence of a peak is not automati-
cally associated to a large weight in the region of this peak.

0&i&100 > 0&100

B— fig. 4 data

, \
L | | | W
[ S I I I A B I I A A I

0

0 1 2 3 4 5 6 7
8

L
I|III

o0

VIl. ZOOMING IN THE =,=0 PEAK: LONG TAILS
FIG. 5. Coarse graining features of the population distribution o o ]
Ps(ma) in the Gaussian model. In each region, the population TO go beyond the coarse graining description, we zoom in
ranges dominating the distribution have been indicatedor =, ~ the my=0 peak. As shown in the inset of Fig. 2, the small

<12%, i for 12%<m,<88%, and 100 forr,=88%). activities, labeled as “no activity” in a coarse graining de-
scription, actually consist of nonzero activities with values
12% —2RT scanning several orders of magnitude. This can be analyzed
Wozf Pe or G(WA)dWA:f Pe or c(0G)doG. quantitatively, e.g., in the Gaussian model. Fgy=0, the
- ) activity distribution given by Eq(4) is quasi-lognormal:

Similarly, the mutants with “full,” respectively, “inter- _ 1 UEASE
mediate,” activity are defined as those with,=88%, Po(ma)= \/ﬂg - ex 292 . (10
respectively 12%7,<88%, and their weight is 0TA 0
W100= Jor7Pe or 6(8G) A5G, respectively, Wi Thus,Pg(w,) has as a power-law-like behavifi5,21]

=[12R1P. or c(6G)d 8G. Taking for definiteness the Gauss-

ian model leads to o
for e9~V2%0< 7, <ed* 2%,

1
_ Po(ma)=—=—=——
Wz B 2 g ) N27goma
o 9o o/’ 1D
where®(u) = [! e7t2/zdt/\/§ is the distribution function in the vicinity of the lognormal mediae“. This corresponds
of the normal _(;istribution. Similarly, one has;=®[(2 to an extremely long tailed distribution, sincen}/is not

- even normalizable. It presents the peculiarity that,a@nd
—0)/go]—P[—(2+09)/ and wige=1—-®[(2—9g)/go]- . _ _ -
Aggrc?gi]mate[ ( ex%)re%(;]ions o <I>(u[)( 6[)(1)9(03) a+1 belonging to[g— \29,.9+ v2d,]. the probability to

W2y e _ _ obtain a populationr, of a given order of magnitude i.e.,
=—e "¥/(y2mu) for u<—1, ®(u)=1/2+u/y2m for mae[e? e?"1], does not depend on the considered ordered

lu|<1 and®(u)=1—e Y"2/(\2mu) for u>1] give the re-  of magnitudea, since

gimes in which each weight is negligible (v<1), domi-

nant (1-w<1), or in between. For instancey, is negli- gatl

gible for g>go—2, dominant for g<—g,—2, and Ja Pg(ma)dma=const. 12

intermediate for—gy—2<g<ge—2. These inequalities in- ¢

dicate the transition from one regime to another. To berpys, if a living organism has to adapt the chemical activity

strictly in one regime typically requires thgtg, is larger or - of one of its biopolymer constituents, it can explore several

greater than 1 from the corresponding criterion, evay,is  order of magnitude of activity by only few mutations within

strictly negligible wheng/go>1+(gdo—2)/do. The transi-  the piopolymer. The activity changes mimic awyeflight

tions from one regime to another one are in general expor22] as revealed, e.g., by the experimental data in R&f.

nentially fast(solid lines in Fig. 3. However, in the region The large activity changes will raise self-averaging issues

(90>2, |g]<go—2), the transitions from one regime to an- [15] that will add up to those generated by correlations along

other one are smoottdashed lines in Fig.)5since, in this evolutionary path$§23].

region, the weights vary slowly, e.qv;=4/(go\2). Three broadness regimes corresponding to three evolu-
The resulting coarse graining classificationR{(m4) is  tionary regimes can be distinguishedgyf is very large, the

represented in Fig. 5. The “all or none” behavior, denotedmutant activities span a very large range. This regime might

“0 & 100,” appears in the regiong,=6/\/w/2 and lg] be globally lethal because, in most cases, the mutant activity

< /m/2g,—6 as the result of a large dispersion of energywill be either too low or too large to be biologically useful.
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However, under conditions of intense stress, the large vari-  7——171T 1T T T T T o T 7T
ability might allow the system to evolve radically. With, -

. - ) T=300K |
=10, for instance, the activity range covers typically 12 or- 6 7
ders of magnitude from 10e9 to 1Pe? [see Eq(11)]. If g, i T=394K 1
is moderately large, the mutant activities span just a few% S N
orders of magnitude. This regime is broad enough to permit§ ,| T=53K |

significant changes, but not too broad to avoid producing too§
many lethal changes. Witho=3, for instance, the activity & 3L
range covers typically 3—4 orders of magnitude from o L/ i/ .

107189 to 10"%9. If g, is small, the lognormal distribution ¢38 2
peak can be approximated by a Gaus$iHs| -

1 B preferred! g, range? ]
1 — (WA_ ea)z 0 1 | 1 | 1 | 1 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1
Pg(ma)= —ex — (13 0 1 2 3 4 5 6 7 8 9 10 11 12
V2mgoe’ 2(90€%° %

The distribution is now narrow and the ranges of values is FIG. 6. Free energy dispersiofG, as a function ofg, for
typically [e9(1—2g,),e%(1+2g,)]. This type of distribu- different temperature3. The upper and lower temperature limits
tion is not adapted for producing large changes, but rather fdlor life are, respectively=121 °C (394 K) and=—20 °C (253 K).
performing fine tuning optimization. Witlyo=0.1, for in-  Depending on whether the energy statistics is determined by the
stance, the activity range covers onty20% arounde’. biophysics or by evolutionary requirements, the range of eifiGy

We remark that the group-I ribozyme which we have ana®’ of.go is fixed (see, for example, the dashed lineSvolutionary
lyzed corresponds tgy=2.9, right in the critical regime of ~reduirements suggestlgo=6.
moderately largg,. One can guess from experimental stud-

ies of other biopolymers or from chemical considerations VIll. CONCLUSIONS
that most biopolymers will fall in this range sine¥5, is
typically on the order of a few kilocalories whilRT is In this paper, we have presented a model for the distribu-

=0.6 kcal. (Note that6G, corresponds to the free energy tion of biopolymer activities resulting from mutations of a
change between the biopolymer native 3D state and an uryiven sequence. The model is characterized by the statistics
folded state, in which the biopolymer has lost its three-of the energy differences between active conformations and

dimensional shape but not its full secondary struciufe. jnactive conformations. A similar model would be obtained
would be interesting to perform further statistical data analyb

is t h h ilabl ; ) d'ﬁ,¥ considering the statistics of activation energies. The
Sis to see how, e.g., the available protein mutagenesis studig, e fits the measured activity distribution of a ribozyme
fit with our present model.

The energy statistics associated mutations is likely to bW'th energy parameters in the physically appropriate range.

determined at gross scale by the basic biophysics of the moE is also able to reproduce commonly observed behaviors

ecules involved. This fixes a range f66,. It is nonetheless such as all or none. i - .
plausible and suggested by our discussion that there is an Importantly, the peak of small activities exhibits three dis-

evolutionary preferred type of activity distribution, and tNCt types depending on the broadness of the distribution of
hence of sequences, that may imply a fine tuningggf €N€r9Y differences. Real blopolymers arein a cr|t.|c.a_I regime
= 6G,/RT within the constraints o@G, coming from bio- allowing the explpraﬂon of different ranges of aCtI\./ItIeS. ina
physics(see Fig. 6 so that each mutation typically generatesféW mutations without being too often lethal. This critical
a significant, but not systematically lethal, activity change. Iffégime seems the most favorable evolutionary regime and
one considers that the activity changes must cover betweef0uld be the statistical engine allowing molecular evolution.
say, one and seven orders of magnitude, then the allgyed Thus the present work supports the idea that, for evolution to
range is 1-Gsee Eq(11)]. take place, the temperature and the physicochemistry dictat-
To answer the question whether the energy statistics g the free energy scales of biopolymers must obey a certain
solely dictated by molecular biophysics or whether it is alsoratio. At last, it suggests that, by looking at small variations
influenced by evolutionary requirements, one may comparef this ratio, one might be able to classify biopolymers. One
the energy statistics of molecules from different thermal enexpects, for instance, that biopolymer sequences that are
vironments. The conservation of tl, range across psy- locked in a shape with a specific function, will have smaller
chrophilic and thermophilic molecules would stress theg, than rapidly evolving biopolymers sequences that could
domination of biophysics factors. Note that our model wouldacquire new functions by undergoing major structural
then imply different stochastic evolutionary dynamics,changes. Thus, at the origin of life or during rapidly evolving
through the width of the activity distribution, for psychro- punctuations, biopolymers with larggp than those charac-
philic and thermophilic environments. Conversely, the con-erizing highly optimized, modern RNA and protein mol-
servation ofg, would reveal the importance of evolutionary ecules, could have contributed to the emergence of novel
requirements. phenotypes, leading thus to an increase of complexity.

031908-6



LARGE PHENOTYPE JUMPS IN BIOMOLECULAR EVOLUTION PHYSICAL REVIEW B9, 031908 (2004

[1] W. Fontana, BioEssay24, 1164(2002. [15] M. Romeo, V. da Costa, and F. Bardou, Eur. Phys. 32813
[2] M. Kimura, Nature(London 217, 624 (1968. (2003.
[3] M. Kimura, The Neutral Theory of Molecular Evolutidg@am-  [16] S. Couture, A.D. Ellington, A.S. Gerber, J.M. Cherry, J.A.
bridge University Press, Cambridge, 1993 Doudna, R. Green, M. Hanna, U. Pace, J. Rajagopal, and J.W.
[4] P. Schuster, W. Fontana, P.F. Stadler, and I.L. Hofacker, Proc. = Szostak, J. Mol. Biol215 345(1990.
R. Soc. London, Ser. B55 279 (1994. [17] L. Jaeger, E. Westhof, and F. Michel, J. Mol. Bi@34, 331
[5] A.S. Perelson and G.F. Oster, J. Theor. B&il, 645 (1979. (1993.
[6] E.A. Schultes and D.P. Bartel, Scien2&9, 448 (2000. [18] L. Jaeger, F. Michel, and E. Westhof, J. Mol. BiaB6, 1271
[7] W. Fontana and P. Schuster, Scie288, 1451(1998. (19949.
[8] L.W. Ancel and W. Fontana, J. Exp. Zo@88 242 (2000. [19] P. Brion and E. Westhof, Annu. Rev. Biophys. Biomol. Struct.
[9] Levy Flights and Related Topics in Physiedited by M. F. 26, 113(1997.
Shlesinger, G. M. Zaslavsky, and U. Frisch, Vol. 450Lef- [20] P. Brion, F. Michel, R. Schroeder, and E. Westhof, Nucleic
ture Notes in PhysicéSpringer-Verlag, Berlin, 1995 Acids Res.27, 2494(1999.

[10] Anomalous DiffusionFrom Basics to Applicationsedited by  [21] E.W. Montroll and M.F. Shlesinger, J. Stat. Phya2, 209
R. Kutner, A. P&alski, and K. Sznajd-Weron, Proceedings of (1983.
the XIth Max Born Symposium Held at,dek Zdrq, Poland,  [22] J.-P. Bouchaud and A. Georges, Phys. R& 127 (1990.
1998 (Springer-Verlag, Berlin, 1999 [23] U. Bastolla, M. Porto, H.E. Roman, and M. Vendruscolo, Phys.
[11] F. Bardou, J.-P. Bouchaud, A. Aspect, and C. Cohen- Rev. Lett.89, 208101(2002.
Tannoudji,Léevy Statistics and Laser Coolin@ambridge Uni-  [24] J.N. Onuchic, Z. LutheySchulten, and P.G. Wolynes, Annu.

versity Press, Cambridge, 2002 Rev. Phys. Chem48, 545(1997.
[12] N. Elredge and S. J. Gould, Models in Paleobiologyedited  [25] In our model, the inactive state may be replaced by an en-
by T. J. M. Schopf(Freeman Cooper & Co, San Francisco, semble of inactive states with a given enefgy].
1972, pp. 82-115. [26] With Gaussian distributions afG,, andE,, one can be more
[13] B. Doliwa and A. Heuer, Phys. Rev. &/, 031506(2003. specific. Bothw, and k are then lognormally distributed at
[14] V. da Costa, M. Romeo, and F. Bardou, J. Magn. Magn. Mater. small values. Thus, the produat=km, is also lognormally
258-259 90 (2002. distributed[15].

031908-7



