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Abstract

This paper presents an overview of the statistical properties arising from the broadness of the distribution of tunnel

currents in metal–insulator–metal junctions. Experimental current inhomogeneities can be modelled by a lognormal

distribution and the size dependence of the tunnel current is modified at small sizes by the effect of broad distributions.
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1. Introduction: MIM junctions and broad distributions

Metal–insulator–metal (MIM) tunnel junctions have

been introduced into the physics toolbox four decades

ago [1]. They have given rise to several landmarks in

condensed matter physics such as the Josephson effect

and the Coulomb blockade. Since the discovery of large

room temperature tunnel magneto-resistance (TMR)

[2,3], MIM junctions have been under intense scrutiny

again. This paper will summarize recent studies of the

disorder effects in MIM junctions, which is one of the

aspects of MIM junctions’ physics. This topic is not new

[4,5] but it can be revisited thanks to recent experimental

and theoretical developments.

Practioners know how difficult it is to achieve

reproducibility of the conductances of MIM junctions,

even when the junctions are prepared on the same wafer.

This is becoming a crucial problem with the prospect of

applications of TMR to Magnetic Random Access

Memories and magnetic read heads, which require the

conductance dispersion to be typically less than 10%.

This raises the question of whether the conductance

irreproducibility is a purely technical problem or

whether there is something more fundamental behind it.

The observed large dispersion of conductances from

one junction to another one is statistically unusual and

this provides a clue on the nature of the problem.

Consider, for instance, a 10 � 10 mm2 junction with a

typical interatomic distance of 0.3 nm, so that the cross-

section contains nC109 atoms. According to the central

limit theorem, relative fluctuations of an ensemble of n

components scale as 1=
ffiffiffi
n

p
: Thus, fluctuations of 10% at

the junction scale would correspond to fluctuations of

3000 at the atomic scale. This suggests that either the

distribution of tunnel currents is extremely broad, or

that fluctuations do not average out as in the central

limit theorem, or both.

During the last 15 years, the importance of such broad

distributions has emerged in several areas of statistical

physics related mostly to anomalous diffusion [6–8]. The

paradigm of broad distributions is the L!evy flight, i.e.,

random walks in which the length l of the free flight has

a power law distribution PðlÞ ¼ ala0=l1þa (l > l0) with a

diverging second moment (0oao2). With such dis-

tributions, the variance is infinite, the usual central limit

theorem does not apply and the relative fluctuations of a

sum of n terms do not decrease with the number of

terms. This reminds of the large fluctuations observed

even in large junctions. Moreover, the sum of n terms
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displacements tends to be dominated by a few of them

which reminds of the infamous ‘hot spots’, i.e., of

filament-like structures carrying most of the current. At

last, with L!evy flights, even the law of large numbers can

fail to apply, i.e., the typical sum of n terms might not be

proportional to n even at large n (case ar1). This

suggests that the tunnel current might not always be

proportional to the size of the junction.

There seems to be a connection between broad

distributions and MIM tunnel junctions. To clarify the

matter, one needs to know experimentally the distribu-

tion of tunnel conductances (Section 2). Then one can

study the consequences of the current distribution

(Section 3), in particular the scale effects (Section 4).

2. Experimental distribution of tunnel currents

Conducting atomic force microscopy (C-AFM) can

map the tunnel current flowing through an oxide barrier

[9]. In this technique, the conducting tip of an atomic

force microscope is scanned in contact with the surface

of the barrier, while a bias voltage between the tip and

the bottom metallic electrode creates a current flowing

through the barrier. In this way, one records simulta-

neously the topography and the tunnel current. The

actual resolution of the C-AFM is difficult to estimate.

Correlation studies show that current structures smaller

than 1 nm2 are resolved. There must, however, be some

sort of convolution by the finite tip size, which produces

some underestimation of the current inhomogeneities.

The topography and current images for a typical

oxide (AlOx) barrier are shown in Fig. 1. The topo-

graphy (1a) is very smooth (roughness C0:2 nm),

whereas the logarithm of the current image (1b) exhibits

a continuum of current values going from C40 pA to

C1 nA. The local I–V characteristics obtained with C-

AFM are consistent with tunnelling with transmission

much less than 1, even at the highest current points

which are, thus, not pinholes. This type of experiments

has been reproduced by several groups with similar

results [10–15]. They are especially useful for barrier

optimization, for instance with respect to oxidation

[16,17] or annealing [13,18].

Several types of tiny barrier inhomogeneities can be

responsible for the large current inhomogeneities which

are observed in both C-AFM and numerical simulations

[19]. First, due to the amorphous nature of most

insulator barriers, the metal-oxide interfaces cannot be

perfectly smooth and fluctuations of the barrier thickness

are unavoidable. What is of interest here is the ‘rough-

ness’ of the barrier thickness which is usually much

smaller than the topography roughness [9,16]. Thickness

roughness of less than 0.1 nm can generate the fluctua-

tions visible in Fig. 1b. There must also exist inhomo-

geneities of the barrier height. Indeed changing a single

atom at a metal-oxide interface can induce local barrier

changes larger than 1 eV [20]. Statistics on the barrier

parameters obtained from many local C-AFM I2V

curves seem to indicate that barrier height inhomogene-

ities play a more important role than thickness

inhomogeneities [11]. At last, metal oxides are known

for containing electron traps which are clearly evidenced

in noise studies [21] (see also Section 4) and impurity

states [12,22]. Further studies (C-AFM, physico-chem-

istry of oxides, electronic and structural simulation,

ballistic electron emission spectroscopy [23], etc.) are

needed to clarify the origin of current inhomogeneities.

Even without knowing the origin of the current

inhomogeneities, important consequences can be drawn

from the knowledge of the statistical distribution PðiÞ of

currents. The distribution PðiÞ presents in many cases

[9,24] a lognormal shape (Fig. 2):

PðiÞ ¼
1ffiffiffiffiffiffi
2p

p
si

exp �
ln i � mð Þ2

2s2

� �
¼ LNðm; s2ÞðiÞ; ð1Þ

where m is a scale parameter and s is a shape parameter,

hereafter called the ‘disorder strength’. Note that

Fig. 1. (a) topography (black = 0 nm, white = 0.2 nm) and (b) tunnel current (log scale, black = 40 pA, white = 1 nA) images for an

Al oxide barrier (Al deposited on Co, Ar + O2 plasma oxidized, AlOx thickness C 1 nm, see Ref. [16]).
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standard w2 fitting procedures are not adequate to fit

lognormal distributions because most of the current is

usually carried by the tail of the distribution while w2

fitting weights heavily the peak of the distribution,

which does not carry here a significant current and is

strongly affected by spurious noise. To take into account

the large value tail more properly, one can, e.g., fit a

parabola to the large ln i branch of lnPðiÞ vs ln i (a

lognormal distribution is a parabola in log–log scale).

The occurrence of lognormal distribution of tunnel

currents is not a surprise [25]. Suppose, indeed, that the

distribution PðdÞ of barrier thickness d is Gaussian with

mean md and standard deviation sd : The current i varies

typically exponentially with d:

i ¼ i0e�d=l; ð2Þ

where i0 is a current scale and l is the attenuation length

of the electronic wave functions in the barrier. By

definition, the exponential of a Gaussian random

variable is a lognormal random variable. Thus, the

current i has a lognormal distribution LNðm; s2Þ with

m ¼ lni0 � md=l and s ¼ sd=l [25]. Importantly, the

disorder strength s is sd=l and not sd=md as one might

expect naively. Thus, a barrier which appears geome-

trically smooth (sd=md51) might be ‘rough’

(s ¼ sd=l\1) from the point of view of current

statistics, since typically l5md (lC0:05 � 0:1 nm,

mdC1–2 nm), and generate large current inhomogene-

ities.

More generally, the tunnel current i depends on the

barrier parameters pb (thickness, height, voltage, ...)

typically as

i ¼ gb pbð Þexp fb pbð Þ½ �; ð3Þ

where gbð pbÞ and fbð pbÞ vary less strongly than an

exponential. If pb presents small Gaussian fluctuations

of standard deviation spb
(spb

5mpb
Þ around its average

value mpb
; then one has pb ¼ mpb

þ espb
; where e is a

Gaussian random variable of order 1 (mean 0; standard

deviation = 1). As spb
5mpb

; one can write fbð pbÞ ¼
fbðmpb

Þ þ espb
f 0
bðmpb

Þ and thus

i ¼ gb pbð Þexp fb mpb

� �� �
exp espb

f 0
b mpb

� �� �
: ð4Þ

As gbð pbÞ varies slowly, one can neglect its fluctuations.

Thus, i appears as the product of a fixed term,

gb pbð Þexp fb mpb

� �� �
; by the exponential of a Gaussian

random variable, espb
f 0
b mpb

� �
; which is, by definition, a

lognormal random variable.

Thus, lognormal distributions of tunnel currents

emerge as the consequence of small Gaussian fluctua-

tions of the tunnelling parameters and are a good

starting point to investigate the tunnel current statistics.

3. Simple consequences of the lognormal model

The lognormal distribution of currents (Eq. (1)) gives

rise to peculiar statistical properties. If the disorder

strength is small (s51), the lognormal is close to a

Gaussian and the usual statistical behaviours, related to

narrow distributions, appear. On the contrary, if s is on

the order of 1 or larger, the lognormal distribution is

broad and it presents a long tail, just as a L!evy flight,

even if, unlike a L!evy flight, it has finite average and

standard deviation. The broadness of the lognormal also

appears in the fact that the typical current it (i.e., most

probable value),

it ¼ em�s2

; ð5Þ

can be much smaller than the average current mi;

mi ¼ emþs2=2; ð6Þ

indicating a large dispersion.

Fig. 3 illustrates the differences between narrow and

broad distributions. Fig. 3a represents random values of

a narrow distribution, a Gaussian of arbitrary mean m
and standard deviation s ¼ 2: The X -coordinate may

represent the position k in a 1D tunnel barrier while the

Y -coordinate may represent the thickness or height of

the barrier. All values are of the same order of

magnitude, m; to within about s: For the Gaussian, the

typical value and the mean are equal. Fig. 3b represents

random values of a broad distribution, which is the

lognormal arising from the exponential of the Gaussian

values of Fig. 3a. Fig. 3b may represent tunnel currents.

The appearance of the fluctuations is now completely

different. The possible values cover several orders of

magnitude. Neither the typical value nor the mean,

which differ by a factor of 400, characterize well the

range of possible values. Thus, practically, the tunnel

Fig. 2. Probability distribution PðiÞ of the tunnel current of

Fig. 1b (open circles). The lognormal fit of the high current tail

of these data (m ¼ �2:5; s ¼ 0:83) is shown as solid line (the

small current tail is distorted by spurious noise). Also indicated

are the distributions PðIn=nÞ of currents flowing through groups

of n shuffled pixels (Section 4), which peak around the average

current mi for large n:
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current through a disordered barrier is not well

characterized by a single value like its mean but rather

by the full distribution (two parameters for a lognor-

mal).

The large values observed in Fig. 3b correspond to the

hot spots in tunnelling. These are not pinholes: the large

currents arise from tiny fluctuations of barrier para-

meters (Fig. 3a) because the exponential dependence

acts as a ‘fluctuation amplifier’. There is a continuum of

large current values corresponding to sites that have

nothing qualitatively special, but rather present small

quantitative fluctuations of the barrier parameters. With

the lognormal model, one can estimate the current

inhomogeneity [26] by calculating the proportion pA of

the surface ( pA ¼
R
N

ia
PðiÞ di where ia is a parameter)

carrying the proportion pi of the average current /iS
( pi ¼

R
N

ia
iPðiÞ di=/iS). For small s (so0:25), half of

the total current is carried by roughly half of the sites

(no hot spots). For large s; the current proportion

carried by hot spots becomes more and more important.

For instance, for s ¼ 1 (respectively 2), pi ¼ 50% of the

total current is carried on average by pA ¼ 16%
(respectively 3%) of the sites with highest current.

The domination of the current by the few largest

transmission sites is indirectly confirmed by the time

fluctuations of the total current. In certain conditions

(small enough conditions, low temperatures), the current

exhibits strong telegraph noise indicative of electron

trapping and detrapping on a single trap in the barrier

[21,27,28]. The large effect of a single electron trap on

the total current flowing through a junction is a strong

clue for the dominant role of a few hot spots.

At last, we comment Eq. (6) for the average current.

One should first be cautious that, contrary to what is

frequently assumed [4,5], the average mi is not in general

what is measured on a single tunnel junctions (see

Section 4). For a perfect barrier (s ¼ 0), we recover the

current em without inhomogeneities, as expected. The

inhomogeneities generate a correcting ‘disorder term’,

es
2=2: This term is always larger than 1: the barrier

inhomogeneities always increase the average current,

due to the non-linear dependence of the current on the

fluctuating parameters. Thus, the average current mi

flowing through an inhomogeneous barrier of given

average thickness corresponds to the current iðdeff Þ
flowing through a thinner effective homogeneous barrier

(deffomd ), as already noticed in Ref. [5]. Yet, in the

model based on thickness fluctuations, as m ¼ ln i0 �
md=l; the average current mi still depends exponentially

on the average thickness md ; just as the current for a

homogeneous barrier. This is contrast with the mod-

ification of the I–V characteristics shape by the presence

of disorder [5].

4. Scale effects

The broad distribution of currents affects the size

dependence of tunnel junctions giving rise to anomalous

scaling laws. To understand this intuitively, we have

plotted in Figs. 3a and b (solid lines) the quantities

Dn=n ¼
Xn

k¼1

dk=n ð7Þ

and

In=n ¼
Xn

k¼1

ik=n; ð8Þ

which represent, physically, the measured quantities at

scale n: For instance In=n is proportional to the current

per unit area flowing through a junction of size n: For

the Gaussian variable d ; Dn=n is statistically distributed

around the mean m and statistically converges to m as

1=
ffiffiffi
n

p
when n increases (central limit theorem). At any

scale, we have Dnpn: For the lognormal variable i; the

sum In behaves completely differently. At small scales, In

takes small values very different from the mean and, as n

increases, there is a slow upward trend of In towards the
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Fig. 3. Differences between narrow and broad distributions.

Dots represent random values drawn from the distributions

described in the text; solid lines represent the partial sums of

these random values (�10), see Section 3. (a) Gaussian (narrow)

distribution; (b) lognormal (broad) distribution. The broken

line in (b) gives the typical scaling behaviour (see Section 4).
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mean mi: this is the anomalous scaling we investigate

here. This upward trend is created by the higher

probability of larger samples (larger n’s) to have a very

large current peak ik that will significantly draw the sum

In towards larger values. This effect does not occur with

narrow distributions like Gaussians for which the largest

terms in a statistical sample are not large enough to

modify the sums significantly.

These scale effects can be studied theoretically [25,26].

The problem reduces to finding the distribution of the

sum In of n independent currents ik with the same

lognormal distribution PðiÞ ¼ LNðm; s2ÞðiÞ: For moder-

ately broad lognormal distributions, we find that In is

also approximately lognormally distributed, as

LNðmn; s
2
nÞ; and has a typical value

I t
nCnmi 1 þ C2=n

� ��3=2
; ð9Þ

where mi is the average current (Eq. (6)) and C2 ¼
es

2

� 1 is the coefficient of variation. The typical current

is thus the product of the usual term nmi by a correction

term 1 þ C2=n
� ��3=2

: For small junctions (n5C2), the

correction term is important. Above a characteristic size

nc ¼ C2 related to the disorder strength, the correction

term tends slowly to 1 and the usual behaviour nmi

related to the law of large numbers is recovered.

The scaling relation Eq. (9) can be tested experimen-

tally with the current image of Fig. 1. For each n; we first

sum the currents of groups of n pixels to obtain a

statistical ensemble of values In and then construct the

histograms presented in Fig. 2. The histograms’ peaks

give I t
n (one must not compute the mean but the typical

value of In’s: the mean presents no special scaling

behaviour). Before grouping them, the pixels have been

spatially randomized to satisfy the condition of statis-

tical independence of the ik’s. The result of this

procedure for I t
n=n is plotted in Fig. 4. As predicted,

I t
n=n deviates strongly at small scales from the constant

mi that one would expect naively and the deviation is

well described by Eq. (9). The maximum deviation is a

factor 2:8Ce3s2=2 for this good quality junction

(s ¼ 0:83). For poorer quality junctions, deviations

larger than 102 have been observed [24].

If one takes into account the spatial correlations

existing in the barrier by not randomizing the pixels

(black squares in Fig. 4), there is still an anomalous

scaling of I t
n=n and the convergence towards mi is much

slower than without correlations. Thus, the correlations

play a crucial role in the statistical properties of tunnel

junctions as they combine with the broadness of the

current distribution to yield typical currents differing

from nmi even for relatively large sizes.

The size dependence predicted by Eq. (9) can also be

tested by measuring the currents of many patterned

junctions of different sizes to obtain the typical current

at these sizes. This has been done for semi-conducting

AlAs barriers embedded in GaAs [29]. Again, the typical

current per unit size I t
n=n is found to increase with the

junction size, in qualitative agreement with Eq. (9).

In the tunnel junction community, size dependences

are frequently analysed in terms of the product R � A of

the resistance R by the junction area A and one usually

checks that R � A does not depend on A; which is the

normal size dependence. However, anomalous size

dependences have been reported recently [30]. For

1 nm thick AlOx barriers, a significant increase of R �
A is found, from 60Omm2 for A ¼ 4 mm2 to 330Omm2

for A ¼ 80 mm2: As Rp1=In and Apn; one has R �
Apn=In: Eq. (9) predicts an increase of I t

n=n with n and

thus, one expects intuitively a decrease of R � A with A:
Therefore, the results of Ref. [30] apparently jeopardize

Eq. (9). However, the correct theory [26] predicts that

both the typical In=n and the typical n=InpR � A

increase with the junction size:

ðR � AÞtpð1 þ C2=nÞ�1=2; ð10Þ

which shows how counter-intuitive broad distributions

can be.

5. Conclusions and overview

Several types of experiments (conductive AFM, noise

studies, scaling studies) provide a body of evidence that

the distribution of tunnel currents flowing through MIM

junctions is broad, even in good junctions. This is a

natural consequence of the exponential dependence of

quantum tunnelling with the parameters. With such

broad distributions, the typical value is much smaller

than the average value so that tunnel currents should

not be characterized by a single number but instead by
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Fig. 4. Size dependence of the typical tunnel current density

I t
n=n of the Fig. 1 junction. Squares (respectively circles)

corresponds to unshuffled pixels (respectively shuffled). The

solid line is the theoretical size dependence. The pixel area is

0.15 nm2: However, one cannot rigorously convert junction

sizes from pixels to nm2 because the effective contact area of the

C-AFM tip is unknown.
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the full statistical distribution. The lognormal distribu-

tion is found to fit the experimental data in many cases.

The shape parameter s of lognormal distributions is a

convenient figure of merit to compare the quality of

different junctions.

The broad character of the current distribution has

several implications, some obvious, some less obvious.

First, the current flows heterogeneously through the

junction, in a way that the lognormal model can

quantify. Second, large spatial variations of the current

imply large time variations, i.e., large noise. Third, the

average current varies strongly, typically as es
2

with the

strength s of the disorder. Fourth, the size dependence

of the typical properties of tunnel junctions (resistance

or conductance) is affected by the disorder, especially at

small scales. One recovers the usual size dependences at

large scales but the transition from small scale behaviour

to large scale behaviour is slow. This transition is further

slowed down by spatial correlations. Correspondingly,

the large current inhomogeneities that exist at small

scale average out slowly when increasing the size of the

system. Thus, even relatively large junctions exhibit

large dispersions of conductances which are the relics of

the poorly averaged small-scale inhomogeneities.

For applications, it is worth mentioning that the

effects of disorder increase rapidly when decreasing the

junction size below a characteristic size related to the

disorder strength and to the spatial correlations. To

achieve better reproducibility, apart from the obvious

reduction of the barrier disorder, one could also aim at

reducing the spatial correlations.
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