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Abstract. – A small momentum transfer to a particle interacting with a steep potential
barrier gives rise to a quantum evaporation effect which increases the transmission appreciably.
This effect results from the unexpectedly large population of quantum states with energies
above the height of the barrier. Its characteristic properties are studied and an example of
physical system in which it may be observed is given.

It is well known that the wave nature of quantum motion can amplify as well as reduce
quantum transport in comparison with its classical counterpart. For example, a quantum
particle is able to tunnel through a potential barrier, a behaviour which is, of course, not
possible in classical mechanics. On the contrary, the same particle is very likely to move in a
certain part only of a random medium [1] whereas a classical particle may wander through the
whole of it. The Schrödinger equation leads therefore to a large variety of situations regarding
transport, whose study is still the subject of active research (see, e.g., [2–4]).
In this letter, we describe a novel effect, called quantum evaporation hereafter, in which

the wave nature of quantum motion amplifies transport appreciably. We study the behaviour
in one dimension of a particle which undergoes a small momentum transfer while interacting
with a rectangular potential barrier or with a potential step, both of height larger than its
kinetic energy. We first present wave packet simulations of this behaviour, which reveal that
a small momentum transfer is able to produce a large increase of the transmission into the
classically forbidden region. We then explain this increase by relating it to the population,
induced by the momentum transfer, of the quantum states with energies above the height of
the potential. The population of these quantum states enables the particle to move in the
classically inaccessible region, and so gives rise to quantum evaporation. We finally give an
example of physical system in which this effect could be observed.
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Fig. 1 – Effect of a momentum transfer on the propagation of a wave packet ψ(x). a) Without
momentum transfer. At t = 0 s, a wave packet of Gaussian shape is sent towards a potential barrier
(solid line). At t � 4.5 × 10−15 s, the centroid of the wave packet reaches the potential barrier
(long-dashed line). At t � 15×10−15 s, the transmitted and reflected wave packets are well separated
(dashed line). b) With a momentum transfer. The shapes of the reflected and transmitted wave
packets are plotted at t � 15× 10−15 s. Dashed line: transfer at t = 0 s and potential barrier. Solid
line: transfer at t � 4.5×10−15 s and potential barrier. Long-dashed line: transfer at t � 4.5×10−15 s
and potential step. See text for details.

Figure 1 shows the shape of a quasi-monochromatic wave packet at a few given times of
its interaction with a potential (1). This wave packet has an initial shape which is Gaussian,
with the centroid at the position xi = −6 nm and the standard deviation σ = 0.8 nm. Its
initial wave number distribution is centred on the average wave number k � 1.2 × 1010 m−1

and has the standard deviation δk = 1/(2σ) � 0.05k. In addition, the wave packet has an
average initial kinetic energy Ei = h̄2k2/(2m) = 5 eV (m is the mass of the particle), a typical
energy for an electron in a metal. In fig. 1a, it interacts with a rectangular potential barrier
of height V0 = 10 eV which extends from x = 0 to x = 1 nm, a typical barrier in solid
state physics. The resulting transmission probability, T � 1.2× 10−9, is of the same order of
magnitude as the transmission probability T � 4.5× 10−10 for a purely monochromatic wave.
It is much larger than the classical probability to have an energy larger than V0, which is only
0.5 erfc

(
(
√

mV0/h̄ − k/
√
2)/δk

) � 0.7× 10−15.
In fig. 1b, the wave packet undergoes a small instantaneous momentum transfer h̄q, with

q = 108 m−1 � 10−2k. If the transfer occurs at time t = 0 s (dashed line), i.e. much
before the time t0 = m|xi|/(h̄k) � 4.5 × 10−15 s at which the centroid of the wave packet
reaches the potential, the transmission probability increases only slightly, reaching the value
T � 1.5 × 10−9. This is in agreement with the related small increase of the average kinetic
energy from Ei = 5 eV to Ef = h̄2(k + q)2/(2m) � 5.09 eV. On the contrary, if the transfer

(1)The evolution of the wave packet is obtained by numerical integration of the time-dependent Schrödinger
equation according to the standard Crank-Nicholson method [5]. Grid spacings of 2.5 × 10−18 s in time and
1.5 × 10−12 m in space have been used in our calculations. The resulting accuracy on the values of the
transmission probability T is better than 3%. Note that the results of our wave packet simulations are quite
general because they can be adapted to any quantum particle with the help of the usual scaling relations of
the Schrödinger equation for time, length and wave number.
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happens at a time very close to t0 (solid line), the transmission probability increases up to
T � 1.1 × 10−6. Such a large increase of the transmission probability, whose study is the
subject of this letter, can no longer be explained by the variation of the average kinetic
energy. The shape of the transmitted wave packet, plotted at time t � 15 × 10−15 s, is no
longer Gaussian whereas it is still nearly so in the case of the transfer at t = 0 s.
Figure 1b shows also the shape of the wave packet in the case of a potential step V (x) =

V0H(x) (H(x) is the Heaviside function) and of the momentum transfer at a time t � t0 (long-
dashed line). In the region x > 1 nm, the transmitted wave packet is unexpectedly similar to
the one in the case of the potential barrier. As time progresses, it propagates in the classically
forbidden region x > 0, a behaviour which would hardly be possible with a momentum
transfer taking place much before the time t0. The corresponding transmission probability,
T � 1.4 × 10−6, has nearly the same value as in the case of the potential barrier. These
observations together with the preceding ones inevitably lead to the following conclusion. A
small momentum transfer which comes about while the centroid of the wave packet is close
enough to the potential populates the quantum states with energies above V0, even though the
average final kinetic energy is less than V0. The population of these states is then responsible
for the large increase of the transmission probability observed in the wave packet simulations.
Thus, in spite of being of negligible weight in the wave packet before momentum transfer, the
quantum states with energies above V0 do play a crucial role after the momentum transfer
has happened.
In order to identify the origin of the observed effect, we have examined more precisely the

influence of the time at which the momentum transfer takes place. Figure 2 shows that the
transmission probability T depends approximately as a Gaussian Tmax exp

[−(t − t0)2/2(∆t)2
]

on the time t of occurrence of the momentum transfer. The time at which the transmission
probability takes its largest value Tmax � 1.4 × 10−6 is precisely the time t0 � 4.5 × 10−15 s
at which the centroid of the wave packet reaches the potential step. The length 2∆t �
1.2 × 10−15 s of the time interval within which the momentum transfer must take place to
produce a large increase of the transmission is found to be nearly equal to the duration
2mσ/(h̄k) of appreciable interaction of the wave packet with the potential. If the momentum
transfer comes about at a time t � t0 − ∆t, i.e. much before the interaction of the wave
packet with the potential, it shifts the initial wave number distribution without reshaping
it (see fig. 1b, dashed line). The quantum states with energies above V0 are then scantly
populated and the resulting transmission is small. On the contrary, if the momentum transfer
happens within the interval t0−∆t ≤ t ≤ t0+∆t, i.e. during the interaction of the wave packet
with the potential, it modifies largely the initial wave number distribution (see fig. 1b, solid
and long-dashed lines). The quantum states with energies above V0 are then well populated
and the resulting transmission is large.
We have also studied the influence of the duration δt of the momentum transfer. A non-

instantaneous transfer is found to produce the same increase of the transmission as an in-
stantaneous one, provided that it is fast enough (i.e. δt ≤ 10−16 s). Thus, we focus only on
instantaneous momentum transfers in the sequel. It should be noted that the observed effect
is not interpretable as a trivial consequence of a (naively applied) time-energy uncertainty re-
lation. Indeed, the energy spread δE = h̄/δt which is supposed to correspond to δt = 10−16 s
would be of the order of V0. It would therefore give rise to a transmission of order unity,
which is obviously incompatible with our results. As shown below, the energy distribution
after momentum transfer does definitely not result from a time-energy uncertainty relation.
In order to find the characteristic properties of the observed increase of the transmission,

we use the following model. Our initial wave packet includes only eigenfunctions ψk(x) of the
Hamiltonian describing the motion of the particle in the presence of the potential which have
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Fig. 2 – Variation of the transmission probability T with the time t of occurrence of the momentum
transfer in the case of the potential step. All parameters as in fig. 1.

Fig. 3 – Variation of the transmission probability T with the transferred wave number q. Wave packet
and potential parameters as in fig. 1 (k � 1.2 × 1010 m−1). (a) Transfer before interaction with the
potential barrier. (b) Transfer during the interaction with the potential barrier. (c) Transfer during
the interaction with the potential step.

an energy below V0. In the case of the potential step, the expression of these eigenfunctions
is (0 ≤ k < κ0 =

√
2mV0/h̄)

ψk(x) =
1√
2π
(1− H(x))

(
eikx +

k − i
√

κ2
0 − k2

k + i
√

κ2
0 − k2

e−ikx

)
+

+
1√
2π

H(x)
2k

k + i
√

κ2
0 − k2

e−
√

κ2
0−k2x · (1)

We take here the potential step in preference to the potential barrier so as to emphasize
the fact that the studied effect is genuinely different from tunnelling (2). The transfer of a
momentum h̄q is modelled by a quantum jump, as in the stochastic wave function description
of the evolution of open quantum systems [6]. This quantum jump induces a translation in
momentum space of every eigenfunction in the wave packet, i.e. ψk(p)→ ψk(p−h̄q) = ψk,q(p).
The expression of the wave function ψk,q(x) which corresponds to a given eigenfunction ψk(x)
in the wave packet and takes the effect of the momentum transfer into account is then readily
obtained by a Fourier transformation of the translated wave function ψk(p − h̄q). It is

ψk,q(x) = eiqxψk(x) · (2)

We restrict ourselves to the case of small momentum transfers, characterized by the condition
h̄2(k + q)2/(2m) < V0. This condition ensures, of course, that any transmission produced by
a momentum transfer cannot be due to a trivial increase of the kinetic energy above V0.
The existence of a position-dependent phase factor on the right-hand side of eq. (2) has

the striking consequence that a wave function ψk,q(x) is no longer an eigenfunction of the

(2)The results of this letter are in fact valid for any potential whose slope on the side where the particle
comes in varies rapidly over a de Broglie wavelength. Generally speaking, the steeper the slope, the larger the
transmission due to quantum evaporation.
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Hamiltonian describing the motion of the particle in the presence of the potential. Hence,
ψk,q(x) may be expanded in terms of the eigenfunctions of this Hamiltonian, i.e.

ψk,q(x) =
∫ κ0

0

dk′Ck
k′(q)ψk′(x) +

∫ +∞

κ0

dk′ (Ck
−k′(q)ψ−k′(x) + Ck

k′(q)ψk′(x)
)

, (3)

with Ck
k′,−k′(q) =

∫ +∞
−∞ dxψ∗

k′,−k′(x)ψk,q(x). The first integral in this expansion includes
the nondegenerate eigenfunctions with energies below V0 (cf. eq. (1)) and the second one
the doubly degenerate eigenfunctions with energies above V0 (|k′| > κ0). Because of the
eigenfunctions with energies above V0, every wave function ψk,q(x) has components which
are free to propagate anywhere in space, thus giving rise to a finite probability of quantum
evaporation into the classically inaccessible region x > 0.
If f(k) denotes the amplitude corresponding to the initial wave number distribution, the

time-dependent wave packet which takes the effect of the momentum transfer into account is∫ κ0

0
dkf(k)ψk,q(x, t). The probability T (q) of transmission into the classically forbidden region

is then defined through the relation T (q) = limt→+∞
∫ +∞
0

dx| ∫ κ0

0
dkf(k)ψk,q(x, t)|2. A close

study of the wave packet simulations shows that T (q) is dominated by the contributions with
energies above V0. The transmission probability may therefore be computed accurately with
the help of the following formula:

T (q) ∼ lim
t→+∞

∫ +∞

0

dx
∣∣∣∣
∫ κ0

0

dkf(k)
∫ +∞

κ0

dk′ e−
ih̄k′2
2m t

(
Ck

−k′(q)ψ−k′(x) + Ck
k′(q)ψk′(x)

)∣∣∣∣
2

. (4)

A tedious yet straightforward calculation using the expressions of the wave functions ψk,q(x)
and of the eigenfunctions {ψk′(x), ψ−k′(x)} with energies above V0 leads to the following
formulae for the amplitudes Ck

−k′(q) and Ck
k′(q) in eq. (4):

Ck
−k′(q) =

4iκ2
0k

√
k′2 − κ2

0

π
(
k′ +

√
k′2 − κ2

0

) (
k + i

√
κ2

0 − k2
) ×

× q

((k′ + q)2 − k2)
1(√

κ2
0 − k2 − iq

)2

+ k′2 − κ2
0

, (5)

Ck
k′(q) =

4iκ2
0kk′

π
(
k′ +

√
k′2 − κ2

0

)(
k + i

√
κ2

0 − k2
) ×

× q

(k′2 − (k + q)2) (k′2 − (k − q)2)

(√
κ2

0 − k2 + i
√

k′2 − κ2
0 + iq

)
(√

κ2
0 − k2 + i

√
k′2 − κ2

0 − iq
) · (6)

A first notable property of quantum evaporation follows directly from the expressions of the
amplitudes Ck

−k′(q) and Ck
k′(q). Equations (5) and (6) show that both amplitudes are ratios

of products of algebraic functions of the wave numbers k, k′ and q. Consequently, the effect
of quantum evaporation decreases only algebraically in k′ if this wave number increases from
κ0 up to infinity. This algebraic decrease explains why quantum evaporation produces much
larger transmissions than tunnelling does (whose effect decreases exponentially in

√
κ2

0 − k2 if
this wave number increases from zero up to κ0), as one can see by comparing the curves (b)
and (c) to the curves (a) in fig. 3.
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Since quantum evaporation has a large effect on the transmission, it is interesting to
examine the magnitude of the energy transfers. The average energy Ef of the particle after
momentum transfer is [7]

Ef = h̄2(k2 + q2)/(2m) < V0 · (7)

Thus, for small momentum transfers h̄q such that |q| � k, the energy transfer Ef − Ei =
h̄2q2/(2m) is negligible in comparison with the average initial energy Ei. This point reveals
another remarkable property of quantum evaporation, namely that an appreciable increase of
the transmission does not require a large variation of the average energy. This is so because
the multiplication of any ψk(x) by a factor eiqx (cf. eq. (2)) removes the stationary character
of this wave function, and so increases the transmission, irrespective of the magnitude of the
transferred wave number q. The smallness of the variation of the average energy comes from
the fact that the momentum transfer populates states with energies above as well as below Ei.
It should be noted that a small momentum transfer before the interaction of the wave packet
with the potential produces an average energy transfer Ef − Ei = h̄2((k + q)2 − k2)/(2m) �
h̄2kq/m. Interestingly enough, this average energy transfer is far larger than the previous
one, even though the resulting transmission is much smaller than in the case of quantum
evaporation.
The amplitudes Ck

−k′(q), eq. (5), and Ck
k′(q), eq. (6), are proportional to the transferred

wave number q in the regime |q| � (κ2
0 − k2)/(2κ0) [7]. The transmission probability, eq. (4),

has then the following simple expression:

T (q) ∝ q2 · (8)

Therefore, whether the particle undergoes a forward (q > 0) or backward (q < 0) momentum
transfer, the resulting transmission increases by the same amount if |q| � (κ2

0 − k2)/(2κ0).
This insensitivity to the sign of q is a third characteristic property of quantum evaporation.
It can be understood by remembering that the multiplication of any ψk(x) by a factor eiqx

(cf. eq. (2)) removes the stationary character of this wave function, and so increases the
transmission, irrespective of the sign of the transferred wave number q. By comparison, the
effect of a momentum transfer coming about before the interaction of the wave packet with
the potential amounts merely to a trivial shift in momentum, and the resulting transmission
then increases or decreases according to whether q is positive or negative.
Figure 3 shows the variation of the transmission probability T with the transferred wave

number q for the cases considered in fig. 1b. In the case of a momentum transfer before the
interaction with the potential barrier (curves (a)), the variation of T (q) is small and depends
on the sign of q because the transmission is mainly due to tunnelling. On the contrary, in the
case of a momentum transfer during the interaction with the potential barrier (curves (b)),
T (q) increases by several orders of magnitude because the transmission is fully dominated
by quantum evaporation. For any value of q in the regime |q| � (κ2

0 − k2)/(2κ0), T (q) is
independent of the sign of q and varies quadratically (up to |q| � 0.02k), in agreement with
eq. (8). The energy transfer becomes of course important at larger values of q, with the
expected consequence that a forward momentum transfer produces a larger transmission than
a backward one does. In the case of a momentum transfer during the interaction with the
potential step (curves (c)), the transmission is of course caused by quantum evaporation only.
The corresponding curves are nearly identical to the curves (b), which confirms the fact that
tunnelling has a negligible effect on the transmission in the case of the potential barrier.
Finally, we would like to point out that there are physical systems which may be used

to detect the existence of quantum evaporation. For instance, systems in which electrons
are field emitted from a metal surface upon the application of a strong electric field could



D. Boosé et al.: A quantum evaporation effect 7

be employed with this aim in view. In such systems, quantum evaporation could result from
electron-electron or electron-phonon scattering events taking place in the metallic tip. It would
then lead to the appearance of a high-energy tail with a tell-tale shape in the spectrum of
field-emitted electrons [8]. Laser-cooled atomic gases should prove to be even more interesting
for the observation of the effect. This is so because, by switching a resonant laser beam on
and off, one controls both the value and the time of occurrence of a momentum transfer to
any such system. We have considered a numerical example in which cold metastable helium
atoms are sent with an average initial kinetic energy of 10−11 eV towards a potential step
whose mean height is equal to 1.5× 10−11 eV. Owing to recent advances in the field of laser
cooling techniques, kinetic energies of such small values are now reachable in practice [9]. The
corresponding de Broglie wavelengths are then sufficiently large for a potential step with a
steep enough slope to be generated (cf. footnote (2)). Since the duration of interaction of a
cold helium atom with the potential is of the order of 10−3 s, one has ample time to create
a momentum transfer by spontaneous emission of a photon. This can be done in practice by
adjusting, for instance, the laser to the transition 23S1 → 23P1 (lifetime of 23P1 � 100 ns).
Our calculations indicate that a backward wave number transfer of q = −5× 105 m−1 (which
corresponds to an energy transfer of 1.3 × 10−12 eV) increases the transmission probability
from less than 10−10 up to 5 × 10−4, thus producing a potentially detectable effect. Lastly,
let us mention that one may also obtain a quantum evaporation effect by giving a velocity
v = h̄q/m to the potential instead of transferring a momentum h̄q to the atoms, as can be
shown by using a Galilean transformation of the Schrödinger equation [7].

∗ ∗ ∗
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